Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Proc Natl Acad Sci U S A ; 120(16): e2221652120, 2023 04 18.
Article in English | MEDLINE | ID: covidwho-2300395

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) possess mutations that confer resistance to neutralizing antibodies within the Spike protein and are associated with breakthrough infection and reinfection. By contrast, less is known about the escape from CD8+ T cell-mediated immunity by VOC. Here, we demonstrated that all SARS-CoV-2 VOCs possess the ability to suppress major histocompatibility complex class I (MHC-I) expression. We identified several viral genes that contribute to the suppression of MHC I expression. Notably, MHC-I upregulation was strongly inhibited after SARS-CoV-2 but not influenza virus infection in vivo. While earlier VOCs possess similar capacity as the ancestral strain to suppress MHC-I, the Omicron subvariants exhibited a greater ability to suppress surface MHC-I expression. We identified a common mutation in the E protein of Omicron that further suppressed MHC-I expression. Collectively, our data suggest that in addition to escaping from neutralizing antibodies, the success of Omicron subvariants to cause breakthrough infection and reinfection may in part be due to its optimized evasion from T cell recognition.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Reinfection , COVID-19/genetics , Antibodies, Neutralizing , Breakthrough Infections , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral
2.
J Infect Dis ; 227(6): 788-799, 2023 03 28.
Article in English | MEDLINE | ID: covidwho-2255125

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 virus-specific cytotoxic T-cell lymphocytes (vCTLs) could provide a promising modality in COVID-19 treatment. We aimed to screen, manufacture, and characterize SARS-CoV-2-vCTLs generated from convalescent COVID-19 donors using the CliniMACS Cytokine Capture System (CCS). METHODS: Donor screening was done by stimulation of convalescent COVID-19 donor peripheral blood mononuclear cells with viral peptides and identification of interferonγ (IFN-γ)+ CD4 and CD8 T cells using flow cytometry. Clinical-grade SARS-CoV-2-vCTLs were manufactured using the CliniMACS CCS. The enriched SARS-CoV-2-vCTLs were characterized by T-cell receptor sequencing, mass cytometry, and transcriptome analysis. RESULTS: Of the convalescent donor blood samples, 93% passed the screening criteria for clinical manufacture. Three validation runs resulted in enriched T cells that were 79% (standard error of the mean 21%) IFN-γ+ T cells. SARS-CoV-2-vCTLs displayed a highly diverse T-cell receptor repertoire with enhancement of both memory CD8 and CD4 T cells, especially in CD8 TEM, CD4 TCM, and CD4 TEMRA cell subsets. SARS-CoV-2-vCTLs were polyfunctional with increased gene expression in T-cell function, interleukin, pathogen defense, and tumor necrosis factor superfamily pathways. CONCLUSIONS: Highly functional SARS-CoV-2-vCTLs can be rapidly generated by direct cytokine enrichment (12 hours) from convalescent donors. CLINICAL TRIALS REGISTRATION: NCT04896606.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , T-Lymphocytes, Cytotoxic , Leukocytes, Mononuclear , COVID-19 Drug Treatment , CD8-Positive T-Lymphocytes , CD4-Positive T-Lymphocytes , Cytokines , Interferon-gamma
3.
Front Immunol ; 13: 962079, 2022.
Article in English | MEDLINE | ID: covidwho-2114642

ABSTRACT

Despite the efficacy of antiviral drug repositioning, convalescent plasma (CP), and the currently available vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the worldwide coronavirus disease 2019 (COVID-19) pandemic is still challenging because of the ongoing emergence of certain new SARS-CoV-2 strains known as variants of concern (VOCs). Mutations occurring within the viral genome, characterized by these new emerging VOCs, confer on them the ability to efficiently resist and escape natural and vaccine-induced humoral and cellular immune responses. Consequently, these VOCs have enhanced infectivity, increasing their stable spread in a given population with an important fatality rate. While the humoral immune escape process is well documented, the evasion mechanisms of VOCs from cellular immunity are not well elaborated. In this review, we discussed how SARS-CoV-2 VOCs adapt inside host cells and escape anti-COVID-19 cellular immunity, focusing on the effect of specific SARS-CoV-2 mutations in hampering the activation of CD8+ T-cell immunity.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Immune Evasion , SARS-CoV-2 , Humans , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/genetics
4.
Front Immunol ; 13: 904686, 2022.
Article in English | MEDLINE | ID: covidwho-1933689

ABSTRACT

Two years after the appearance of the SARS-CoV-2 virus, the causal agent of the current global pandemic, it is time to analyze the evolution of the immune protection that infection and vaccination provide. Cellular immunity plays an important role in limiting disease severity and the resolution of infection. The early appearance, breadth and magnitude of SARS-CoV-2 specific T cell response has been correlated with disease severity and it has been thought that T cell responses may be sufficient to clear infection with minimal disease in COVID-19 patients with X-linked or autosomal recessive agammaglobulinemia. However, our knowledge of the phenotypic and functional diversity of CD8+ cytotoxic lymphocytes, CD4+ T helper cells, mucosal-associated invariant T (MAIT) cells and CD4+ T follicular helper (Tfh), which play a critical role in infection control as well as long-term protection, is still evolving. It has been described how CD8+ cytotoxic lymphocytes interrupt viral replication by secreting antiviral cytokines (IFN-γ and TNF-α) and directly killing infected cells, negatively correlating with stages of disease progression. In addition, CD4+ T helper cells have been reported to be key pieces, leading, coordinating and ultimately regulating antiviral immunity. For instance, in some more severe COVID-19 cases a dysregulated CD4+ T cell signature may contribute to the greater production of pro-inflammatory cytokines responsible for pathogenic inflammation. Here we discuss how cellular immunity is the axis around which the rest of the immune system components revolve, since it orchestrates and leads antiviral response by regulating the inflammatory cascade and, as a consequence, the innate immune system, as well as promoting a correct humoral response through CD4+ Tfh cells. This review also analyses the critical role of cellular immunity in modulating the development of high-affinity neutralizing antibodies and germinal center B cell differentiation in memory and long-lived antibody secreting cells. Finally, since there is currently a high percentage of vaccinated population and, in some cases, vaccine booster doses are even being administered in certain countries, we have also summarized newer approaches to long-lasting protective immunity and the cross-protection of cellular immune response against SARS-CoV-2.


Subject(s)
COVID-19 , Antiviral Agents , Cytokines , Humans , Immunity, Cellular , SARS-CoV-2
5.
Metabolites ; 12(7)2022 Jul 14.
Article in English | MEDLINE | ID: covidwho-1928612

ABSTRACT

The microbial-derived metabolite, 3-indolepropionic acid (3-IPA), has been intensely studied since its origins were discovered in 2009; however, 3-IPA's role in immunosuppression has had limited attention. Untargeted metabolomic analyses of T-cell exhaustion and immunosuppression, represented by dysfunctional under-responsive CD8+ T cells, reveal a potential role of 3-IPA in these responses. T-cell exhaustion was examined via infection of two genetically related mouse strains, DBA/1J and DBA/2J, with lymphocytic choriomeningitis virus (LCMV) Clone 13 (Cl13). The different mouse strains produced disparate outcomes driven by their T-cell responses. Infected DBA/2J presented with exhausted T cells and persistent infection, and DBA/1J mice died one week after infection from cytotoxic T lymphocytes (CTLs)-mediated pulmonary failure. Metabolomics revealed over 70 metabolites were altered between the DBA/1J and DBA/2J models over the course of the infection, most of them in mice with a fatal outcome. Cognitive-driven prioritization combined with statistical significance and fold change were used to prioritize the metabolites. 3-IPA, a tryptophan-derived metabolite, was identified as a high-priority candidate for testing. To test its activity 3-IPA was added to the drinking water of the mouse models during LCMV Cl13 infection, with the results showing that 3-IPA allowed the mice to survive longer. This negative immune-modulation effect might be of interest for the modulation of CTL responses in events such as autoimmune diseases, type I diabetes or even COVID-19. Moreover, 3-IPA's bacterial origin raises the possibility of targeting the microbiome to enhance CTL responses in diseases such as cancer and chronic infection.

6.
Vaccines (Basel) ; 10(2)2022 Jan 30.
Article in English | MEDLINE | ID: covidwho-1667375

ABSTRACT

This paper presents an alternative vaccination platform that provides long-term cellular immune protection mediated by cytotoxic T-cells. The immune response via cellular immunity creates superior resistance to viral mutations, which are currently the greatest threat to the global vaccination campaign. Furthermore, we also propose a safer, more facile, and physiologically appropriate immunization method using either intranasal or oral administration. The underlying technology is an adaptation of synthetic long peptides (SLPs) previously used in cancer immunotherapy. The overall quality of the SLP constructs was validated using in silico methods. SLPs comprising HLA class I and class II epitopes were designed to stimulate antigen cross-presentation and canonical class II presentation by dendritic cells. The desired effect is a cytotoxic T cell-mediated prompt and specific immune response against the virus-infected epithelia and a rapid and robust virus clearance. Epitopes isolated from COVID-19 convalescent patients were screened for HLA class I and class II binding (NetMHCpan and NetMHCIIpan) and highest HLA population coverage (IEDB Population Coverage). 15 class I and 4 class II epitopes were identified and used for this SLP design. The constructs were characterized based on their toxicity (ToxinPred), allergenicity (AllerCatPro), immunogenicity (VaxiJen 2.0), and physico-chemical parameters (ProtParam). Based on in silico predictions, out of 60 possible SLPs, 36 candidate structures presented a high probability to be immunogenic, non-allergenic, non-toxic, and stable. 3D peptide folding followed by 3D structure validation (PROCHECK) and molecular docking studies (HADDOCK 2.4) with Toll-like receptors 2 and 4 provided positive results, suggestive for favorable antigen presentation and immune stimulation.

7.
Medicina ; 81(3):421-426, 2021.
Article in Spanish | GIM | ID: covidwho-1602692

ABSTRACT

RNA viruses (except retroviruses) replicate by the action of an RNA-dependent RNA polymerase, which lacks a proofreading exonuclease and, consequently, errors may occur in each replication giving place to viral mutants. Depending on their fitness, these mutants either become extinct or thrive, spawning variants that escape the immune system. The most important SARS-CoV-2 mutations are those that alter the amino acid sequence in the viral S protein because this protein holds the key for the virus to enter the human cell. The more viruses replicate, the more they mutate, and the more likely it is that dominant resistant variants will appear. In such cases, more stringent measures for community protection will be required. Vaccines and polyclonal antibodies, which induce a response directed towards several sites along the S protein, would maintain effective protection against SARS-CoV-2 variants. Furthermore, vaccines appear to induce an increased helper and cytotoxic T-cell response, which may also be a biomarker of protection. In densely populated areas with insufficient protection measures, the virus spreads freely, thus increasing the likelihood of generating escape mutants. India and Manaus exemplify this situation. Natural evolution selects the mutants that multiply most efficiently without eliminating the host, thus facilitating their spread. Contrastingly, the circulation of viruses of high virulence and lethality (Ebola, hantavirus) that eliminate the host remain limited to certain geographic areas, without further dissemination. Therefore, it would be expected that SARS-CoV-2 will evolve into more infectious and less virulent variants.

8.
J Intensive Care ; 9(1): 76, 2021 Dec 20.
Article in English | MEDLINE | ID: covidwho-1581991

ABSTRACT

We evaluated the peripheral blood immune responses of lymphocytes in severe Coronavirus disease 2019 (COVID-19) patients in different stages of recovery using single-cell mass cytometry. The patients with prolonged hospitalization did not show recovery of B lymphocyte counts and CD4-positive T lymphocyte counts but did show abundant CD8-positive T lymphocytes. CD4 and CD8 T cells expressing high levels of T-bet and Granzyme B were more abundant in post-recovery patients. This study showed that cytotoxic Th1 and CD8 T cells are recruited to the peripheral blood long after recovery from COVID-19.

9.
Adv Funct Mater ; 31(41): 2105059, 2021 Oct 08.
Article in English | MEDLINE | ID: covidwho-1312696

ABSTRACT

Cytotoxic T-lymphocytes (CTLs) are central for eliciting protective immunity against malignancies and infectious diseases. Here, for the first time, partially oxidized acetalated dextran nanoparticles (Ox-AcDEX NPs) with an average diameter of 100 nm are fabricated as a general platform for vaccine delivery. To develop effective anticancer vaccines, Ox-AcDEX NPs are conjugated with a representative CTL peptide epitope (CTLp) from human mucin-1 (MUC1) with the sequence of TSAPDTRPAP (referred to as Mp1) and an immune-enhancing adjuvant R837 (referred to as R) via imine bond formation affording AcDEX-(imine)-Mp1-R NPs. Administration of AcDEX-(imine)-Mp1-R NPs results in robust and long-lasting anti-MUC1 CTL immune responses, which provides mice with superior protection from the tumor. To verify its universality, this nanoplatform is also exploited to deliver epitopes from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to prevent coronavirus disease 2019 (COVID-19). By conjugating Ox-AcDEX NPs with the potential CTL epitope of SARS-CoV-2 (referred to as Sp) and R837, AcDEX-(imine)-Sp-R NPs are fabricated for anti-SARS-CoV-2 vaccine candidates. Several epitopes potentially contributing to the induction of potent and protective anti-SARS-CoV-2 CTL responses are examined and discussed. Collectively, these findings shed light on the universal use of Ox-AcDEX NPs to deliver both tumor-associated and virus-associated epitopes.

10.
Cell Immunol ; 365: 104363, 2021 07.
Article in English | MEDLINE | ID: covidwho-1188385

ABSTRACT

The presence of memory T cells in COVID-19 patients has been acknowledged, however the functional potency of memory responses is critical for protection. In this study, naïve, effector, effector memory, and central memory CD4+ and CD8+ T cells obtained from the COVID-19 survivors were re-exposed to autologous monocyte-derived DCs that were loaded with SARS-CoV-2 spike glycoprotein S1. Proliferation capacity, CD25, 4-1BB, and PD-1 expression, and IFN-γ, IL-6, granzyme, granulysin, and FasL secretion were enhanced in CD4+ and CD8+ effector memory and central memory T cells. Albeit being at heterogeneous levels, the memory T cells from the individuals with COVID-19 history possess functional capacities to reinvigorate anti-viral immunity against SARS-CoV-2.


Subject(s)
COVID-19/immunology , Immunologic Memory/immunology , T-Lymphocytes/immunology , Adolescent , Adult , Antibodies, Viral/immunology , Antigens, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/metabolism , COVID-19/transmission , COVID-19/virology , Dendritic Cells/immunology , Epitopes, T-Lymphocyte/immunology , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL